Table of Contents

Definitions
General homogeneity
Positive homogeneity
Examples
Simple example
Absolute value and norms
Linear Maps
Homogeneous polynomials
Min/max
Rational functions
Non-examples
Euler's theorem
Application to differential equations
Generalizations
Homogeneity under a monoid action
Distributions (generalized functions)
Glossary of name variants
See also
Notes
References
Sources
External links

Homogeneous function

In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree. That is, if k is an integer, a function f of n variables is homogeneous of degree k if

f(sx1,,sxn)=skf(x1,,xn)

for every x1,,xn, and s0. This is also referred to a kth-degree or kth-order homogeneous function.

For example, a homogeneous polynomial of degree k defines a homogeneous function of degree k.

The above definition extends to functions whose domain and codomain are vector spaces over a field F: a function f:VW between two F-vector spaces is homogeneous of degree k if

for all nonzero sF and vV. This definition is often further generalized to functions whose domain is not V, but a cone in V, that is, a subset C of V such that vC implies svC for every nonzero scalar s.

In the case of functions of several real variables and real vector spaces, a slightly more general form of homogeneity called positive homogeneity is often considered, by requiring only that the above identities hold for s>0, and allowing any real number k as a degree of homogeneity. Every homogeneous real function is positively homogeneous. The converse is not true, but is locally true in the sense that (for integer degrees) the two kinds of homogeneity cannot be distinguished by considering the behavior of a function near a given point.

A norm over a real vector space is an example of a positively homogeneous function that is not homogeneous. A special case is the absolute value of real numbers. The quotient of two homogeneous polynomials of the same degree gives an example of a homogeneous function of degree zero. This example is fundamental in the definition of projective schemes.

Definitions

The concept of a homogeneous function was originally introduced for functions of several real variables. With the definition of vector spaces at the end of 19th century, the concept has been naturally extended to functions between vector spaces, since a tuple of variable values can be considered as a coordinate vector. It is this more general point of view that is described in this article.

There are two commonly used definitions. The general one works for vector spaces over arbitrary fields, and is restricted to degrees of homogeneity that are integers.

The second one supposes to work over the field of real numbers, or, more generally, over an ordered field. This definition restricts to positive values the scaling factor that occurs in the definition, and is therefore called positive homogeneity, the qualificative positive being often omitted when there is no risk of confusion. Positive homogeneity leads to considering more functions as homogeneous. For example, the absolute value and all norms are positively homogeneous functions that are not homogeneous.

The restriction of the scaling factor to real positive values allows also considering homogeneous functions whose degree of homogeneity is any real number.

General homogeneity

Let V and W be two vector spaces over a field F. A linear cone in V is a subset C of V such that

sxC for all xC and all nonzero sF.
A homogeneous function f from V to W is a partial function from V to W that has a linear cone C as its domain, and satisfies

f(sx)=skf(x)

for some integer k, every xC, and every nonzero sF. The integer k is called the degree of homogeneity, or simply the degree of f.

A typical example of a homogeneous function of degree k is the function defined by a homogeneous polynomial of degree k. The rational function defined by the quotient of two homogeneous polynomials is a homogeneous function; its degree is the difference of the degrees of the numerator and the denominator; its cone of definition is the linear cone of the points where the value of denominator is not zero.

Homogeneous functions play a fundamental role in projective geometry since any homogeneous function f from V to W defines a well-defined function between the projectivizations of V and W. The homogeneous rational functions of degree zero (those defined by the quotient of two homogeneous polynomial of the same degree) play an essential role in the Proj construction of projective schemes.

Positive homogeneity

When working over the real numbers, or more generally over an ordered field, it is commonly convenient to consider positive homogeneity, the definition being exactly the same as that in the preceding section, with "nonzero s" replaced by "s > 0" in the definitions of a linear cone and a homogeneous function.

This change allows considering (positively) homogeneous functions with any real number as their degrees, since exponentiation with a positive real base is well defined.

Even in the case of integer degrees, there are many useful functions that are positively homogeneous without being homogeneous. This is, in particular, the case of the absolute value function and norms, which are all positively homogeneous of degree 1. They are not homogeneous since |-x|=|x|-|x| if x0. This remains true in the complex case, since the field of the complex numbers C and every complex vector space can be considered as real vector spaces.

Euler's homogeneous function theorem is a characterization of positively homogeneous differentiable functions, which may be considered as the fundamental theorem on homogeneous functions.

Examples

A homogeneous function is not necessarily continuous, as shown by this example. This is the function f defined by f(x,y)=x if xy>0 and f(x,y)=0 if xy0. This function is homogeneous of degree 1, that is, f(sx,sy)=sf(x,y) for any real numbers s,x,y. It is discontinuous at y=0,x0.

Simple example

The function f(x,y)=x2+y2 is homogeneous of degree 2:
f(tx,ty)=(tx)2+(ty)2=t2(x2+y2)=t2f(x,y).

Absolute value and norms

The absolute value of a real number is a positively homogeneous function of degree 1, which is not homogeneous, since |sx|=s|x| if s>0, and |sx|=-s|x| if s<0.
The absolute value of a complex number is a positively homogeneous function of degree 1 over the real numbers (that is, when considering the complex numbers as a vector space over the real numbers). It is not homogeneous, over the real numbers as well as over the complex numbers.

More generally, every norm and seminorm is a positively homogeneous function of degree 1 which is not a homogeneous function. As for the absolute value, if the norm or semi-norm is defined on a vector space over the complex numbers, this vector space has to be considered as vector space over the real number for applying the definition of a positively homogeneous function.

Linear Maps

Any linear map f:VW between vector spaces over a field F is homogeneous of degree 1, by the definition of linearity:
f(αv)=αf(v)
for all αF and vV.
Similarly, any multilinear function f:V1×V2×VnW is homogeneous of degree n, by the definition of multilinearity:
f(αv1,,αvn)=αnf(v1,,vn)
for all αF and v1V1,v2V2,,vnVn.

Homogeneous polynomials

Monomials in n variables define homogeneous functions f:FnF. For example,

f(x,y,z)=x5y2z3
is homogeneous of degree 10 since

f(αx,αy,αz)=(αx)5(αy)2(αz)3=α10x5y2z3=α10f(x,y,z).
The degree is the sum of the exponents on the variables; in this example, 10=5+2+3.
A homogeneous polynomial is a polynomial made up of a sum of monomials of the same degree. For example,

x5+2x3y2+9xy4
is a homogeneous polynomial of degree 5. Homogeneous polynomials also define homogeneous functions.

Given a homogeneous polynomial of degree k with real coefficients that takes only positive values, one gets a positively homogeneous function of degree k/d by raising it to the power 1/d. So for example, the following function is positively homogeneous of degree 1 but not homogeneous:
(x2+y2+z2)12.

Min/max

For every set of weights w1,,wn, the following functions are positively homogeneous of degree 1, but not homogeneous:


Rational functions

Rational functions formed as the ratio of two polynomials are homogeneous functions in their domain, that is, off of the linear cone formed by the zeros of the denominator. Thus, if f is homogeneous of degree m and g is homogeneous of degree n, then f/g is homogeneous of degree m-n away from the zeros of g.

Non-examples

The homogeneous real functions of a single variable have the form xcxk for some constant c. So, the affine function xx+5, the natural logarithm xln(x), and the exponential function xex are not homogeneous.

Euler's theorem

Roughly speaking, Euler's homogeneous function theorem asserts that the positively homogeneous functions of a given degree are exactly the solution of a specific partial differential equation. More precisely:
As a consequence, if f:RnR is continuously differentiable and homogeneous of degree k, its first-order partial derivatives f/xi are homogeneous of degree k-1.

This results from Euler's theorem by differentiating the partial differential equation with respect to one variable.

In the case of a function of a single real variable (n=1), the theorem implies that a continuously differentiable and positively homogeneous function of degree k has the form f(x)=c+xk for x>0 and f(x)=c-xk for x<0. The constants c+ and c- are not necessarily the same, as it is the case for the absolute value.

Application to differential equations

The substitution v=y/x converts the ordinary differential equation
I(x,y)dydx+J(x,y)=0,
where I and J are homogeneous functions of the same degree, into the separable differential equation
xdvdx=-J(1,v)I(1,v)-v.

Generalizations

Homogeneity under a monoid action

The definitions given above are all specialized cases of the following more general notion of homogeneity in which X can be any set (rather than a vector space) and the real numbers can be replaced by the more general notion of a monoid.

Let M be a monoid with identity element 1M, let X and Y be sets, and suppose that on both X and Y there are defined monoid actions of M. Let k be a non-negative integer and let f:XY be a map. Then f is said to be if for every xX and mM,
f(mx)=mkf(x).

If in addition there is a function MM, denoted by m|m|, called an then f is said to be if for every xX and mM,
f(mx)=|m|kf(x).
A function is (resp. ) if it is homogeneous of degree 1 over M (resp. absolutely homogeneous of degree 1 over M).

More generally, it is possible for the symbols mk to be defined for mM with k being something other than an integer (for example, if M is the real numbers and k is a non-zero real number then mk is defined even though k is not an integer). If this is the case then f will be called if the same equality holds:
f(mx)=mkf(x) for every xX and mM.
The notion of being is generalized similarly.

Distributions (generalized functions)

A continuous function f on Rn is homogeneous of degree k if and only if

Rnf(tx)φ(x)dx=tkRnf(x)φ(x)dx
for all compactly supported test functions φ; and nonzero real t. Equivalently, making a change of variable y=tx, f is homogeneous of degree k if and only if

t-nRnf(y)φ(yt)dy=tkRnf(y)φ(y)dy
for all t and all test functions φ. The last display makes it possible to define homogeneity of distributions. A distribution S is homogeneous of degree k if

t-nS,φμt=tkS,φ
for all nonzero real t and all test functions φ. Here the angle brackets denote the pairing between distributions and test functions, and μt:RnRn is the mapping of scalar division by the real number t.

Glossary of name variants

Let f:XY be a map between two vector spaces over a field F (usually the real numbers R or complex numbers C). If S is a set of scalars, such as Z, [0,), or [PARSE ERROR: Undefined("Command(\"Reals\")")] for example, then f is said to be if

f(sx)=sf(x) for every xX and scalar sS.

For instance, every additive map between vector spaces is S:=Q although it might not be S:=R.
The following commonly encountered special cases and variations of this definition have their own terminology:

  1. () : f(rx)=rf(x) for all xX and all real r>0.
  2. : f(rx)=rf(x) for all xX and all real r.
  3. : f(sx)=sf(x) for all xX and all scalars sF.
  4. : f(sx)=s_f(x) for all xX and all scalars sF.

All of the above definitions can be generalized by replacing the condition f(rx)=rf(x) with f(rx)=|r|f(x), in which case that definition is prefixed with the word or

For example,


  1. : f(sx)=|s|f(x) for all xX and all scalars sF.
    • This property is used in the definition of a seminorm and a norm.



If k is a fixed real number then the above definitions can be further generalized by replacing the condition f(rx)=rf(x) with f(rx)=rkf(x) (and similarly, by replacing f(rx)=|r|f(x) with f(rx)=|r|kf(x) for conditions using the absolute value, etc.), in which case the homogeneity is said to be (where in particular, all of the above definitions are ).

For instance,


  1. : f(rx)=rkf(x) for all xX and all real r.

  2. : f(sx)=skf(x) for all xX and all scalars sF.

  3. : f(rx)=|r|kf(x) for all xX and all real r.

  4. : f(sx)=|s|kf(x) for all xX and all scalars sF.


A nonzero continuous function that is homogeneous of degree k on Rn[PARSE ERROR: Undefined("Command(\"backslash\")")][PARSE ERROR: Undefined("Command(\"lbrace\")")]0[PARSE ERROR: Undefined("Command(\"rbrace\")")] extends continuously to Rn if and only if k>0.

See also


Notes

Proofs

References

Sources


External links


Category:Linear algebra
Category:Differential operators
Category:Types of functions
Category:Leonhard Euler